ОТЗЫВ

официального оппонента на диссертацию Михеева Андрея Николаевича
на тему: «Гидродинамика и теплообмен при поперечном обтекании
цилиндра пульсирующим потоком», представленную на соискание ученой
степени кандидата технических наук по специальностям 01.02.05 – Механика
жидкости, газа и плазмы; 01.04.14 – Теплофизика и теоретическая
теплотехника.

Актуальность темы.

Задачи физического моделирования процессов переноса импульса и тепла
в различных технических устройствах является важным и актуальным не
только в фундаментальных исследованиях, но и имеют большое прикладное
значение в различных отраслях промышленности и энергетики. От решения
этих задач зависит точность проектирования или модернизации
tеплотехнических устройств и оборудования.

Одним из способов интенсификации теплообменных процессов является
организация нестационарного режима, например пульсационного движения
теплоносителей. Нестационарность значительно усложняет исследование и
моделирование процессов переноса импульса и тепла при обтекании потоком
различных поверхностей, в частности цилиндрических тел. Цилиндрические
tела являются довольно распространенными элементами различного
оборудования и аппаратов, поэтому тема диссертаций работы Михеева А.Н.
является актуальной.

Степень обоснованности научных положений, выводов и
рекомендаций, сформулированных в диссертации.

Основные результаты в диссертационной работе получены на
экспериментальной установке.

Для измерения характеристик пульсирующего потока проводились
термоанемометрические измерения скорости. Сбор данных проводился с
применением автоматизированной систем, включающей ПЭВМ и АЦП L-Card. Видеосъемка картины течения выполнялась скоростной монокромной видеокамерой Fastec Hi Spec в световом ноже, создаваемым непрерывным лазером KLM-532/5000. Частота съемки 112000 кадр/с, максимальное разрешение 1280x1024 пикселя. Частота наложенных пульсаций потока изменялись при помощи частотного преобразователя VACON. Погрешность поддержания объемного расхода потока в установке не более 0,25 %. Таким образом обоснованность и достоверность обеспечивалась применением апробированных методик и средств измерения необходимых характеристик потока, а также удовлетворительным согласованием тестовых экспериментов с данными других авторов.

Достоверность и новизна, полученных результатов.
На основе выполненных экспериментальных исследований, анализа и обобщения полученных данных установлены гидродинамические закономерности обтекания цилиндра пульсирующим потоком. Установлены четыре основных режима обтекания цилиндра.

Предложено новое число подобия в виде отношения силы инерции потока при нестационарном движении к инерционной силе, которая появляется вследствие искривления линии тока при обтекании цилиндра.

Получены обобщенные данные о статистических характеристиках потока и динамике мгновенного векторного поля скорости в ближнем следе цилиндра, обтекаемого пульсирующим потоком.

Получены профили осредненной скорости в ближнем следе цилиндра и ее среднеквадратичных пульсаций. Представлена карта режимов обтекания цилиндра пульсирующим потоком.

Показано, что с использованием предложенного в диссертации числа подобия можно описать границы режима обтекания цилиндра прямыми линиями.
Исследована теплоотдача и получены данные по локальным и средним коэффициентам теплоотдачи (числам Нуссельта) для каждого выявленного режима при обтекании пульсирующим потоком цилиндра.

Предложено критериальное выражение для среднего числа Нуссельта в пульсирующем потоке воздуха.

Теоретическая и практическая значимость полученных автором результатов.

Получены многочисленные опытные данные о гидродинамических и теплообменных характеристиках среды при поперечном обтекании цилиндра пульсирующим потоком. Сделано обобщение результатов и предложено использование нового числа подобия и критериального выражения для средней теплоотдачи цилиндра при обтекании пульсирующим потоком. Полученные результаты могут использоваться при численном моделировании отрывных пульсирующих потоков, а также выборе способов интенсификации теплоотдачи в различных технических устройствах и оборудовании.

Оценка содержания диссертации, её завершенность.

Сделан подробный обзор работ о гидродинамических и теплообменных процессах при обтекании тел стационарным потоком. Приведена картина обтекания, распределения коэффициента давления и динамики точки отрыва потока (пограничного слоя) при поперечном обтекании цилиндра. Показано распределение локальной теплоотдачи (бездимерного комплекса) на цилиндре при различных числах Рейнольдса и турбулентности внешнего потока (воды и воздуха). Приводятся известные критериальные зависимости для расчета числа Нуссельта при поперечном обтекании цилиндра при ламинарном и турбулентном режиме. Анализируется теплоотдача при различной интенсивности турбулентности.

Рассмотрены способы пассивной интенсификации теплообмена поперечного обтекаемого цилиндра (ребрение, шероховатость поверхности,
нанесенные лунки, витыми трубами и др.), а также активные способы: колебания труб, вибрации поверхности, акустические поля, пульсация потока. Пульсация потока рассмотрена наиболее подробно и даны результаты различных исследователей по гидродинамическим и теплообменным характеристикам и обтекания цилиндра.

На основании выполненного обзора работ в диссертации сформулированы задачи исследования, решения которых представлено в 2-4 главах.

Для проведения экспериментальных исследований автором разработана и изготовлена установка с пульсатором, а также методика выполнения исследований.

На первом этапе выполнено визуальное исследование обтекания цилиндра пульсирующим потоком при различных числах Струхалда и Рейнольдса. Для визуализации течения в поток вводились специальные трассеры-аэрозоли (размеры частиц ~ 1 мкм и плотностью, близкую к плотности воздуха). Съемка проводилась скоростной монохромной видеокамерой Fastec HiSpec с частотой 100...2000 кадров/с.

В результате визуальных наблюдений установлены четыре режима обтекания цилиндра пульсирующим потоком (стр. 87-103).

Для проведения тепловых экспериментов по окружности цилиндра с равным шагом располагались 16 хромель-копелевых термопар. Выполнены тестовые эксперименты по теплоотдаче в стационарном режиме.

Получены распределения локальных чисел Нуссельта в квазистационарном режиме (режим 1) при различных амплитудах вынужденных пульсаций скорости потока.

Установлено, что вынужденные пульсации не оказывают существенного влияния на теплоотдачу по сравнению со стационарным режимом. На режимах II - IV наблюдаются значительное увеличение коэффициентов теплоотдачи в кормовой части цилиндра. Сделан анализ полученных результатов по местной теплоотдаче. Получено критериальное выражение для числа
Нуссельта в случае обтекания цилиндра потоком воздуха с вынужденными пульсациями, что придает работе завершенный характер.

Замечания по диссертационной работе:

1. Первые пункты научной новизны и теоретической и практической значимости в основном идентичны (повторяются).

2. Обзорная глава 1 содержит 50 стр., что составляет почти 45% текста всей диссертационной работы (без учета списка литературы). Обычно обзорная глава составляет не более 25-30% от текста.

3. При записи критериального выражения (2.18) (стр. 85) очевидно допущена опечатка, так как зависимость числа Нуссельта Nu от Рейнольдса Re и Прандля Pr в первой степени, что не соответствует известным данным по теплоотдаче.

4. В диссертации не отмечено, как обеспечивалась постоянство температуры цилиндра (70°C) после нагрева в термостате и последующей установки его на рабочий участок экспериментального стенда (стр. 80).

5. Нет данных о гидравлическом сопротивлении исследуемого объекта. Указанные замечания имеют частный характер, не снижают общую положительную оценку диссертаций работы и существенно не влияют на полученные теоретические и практические результаты.

Научные публикации и автореферат соответствуют основному содержанию диссертации.

Заключение

Диссертация Михеева Андрея Николаевича на соискание ученой степени кандидата технических наук является научно-квалификационной работой, в которой содержится решение актуальной задачи по исследованию гидродинамических и теплообменных закономерностей при обтекании цилиндра пульсирующим потоком и имеющей существенное значение для соответствующей отрасли знаний, а именно теплотехники, теплоэнергетики и
аэромеханики. Диссертационной работа соответствует требованиям п. 9 Положения о присуждении учёных степеней, а ее автор заслуживает присуждения учёной степени кандидата технических наук по специальностям: 01.02.05 – Механика жидкости, газа и плазмы; 01.04.14 – Теплофизика и теоретическая теплотехника.

Официальный оппонент:
Лаптев Анатолий Григорьевич
d.т.н., профессор по специальности
05.17.28 – «Процессы и аппараты химических технологий», профессор

Почтовый адрес: 420066, г. Казань, ул. Краснослельская, 51, В-717а
Контактный телефон: 8 (843)519-42-53(54).
E-mail: tvt_kgeu@mail.ru
ФГБОУ ВО «Казанский государственный энергетический университет», заведующий кафедрой «Технология воды и топлив».

А.Г. Лаптев
СВЕДЕНИЯ
об официальном оппоненте Лаптева Анатолия Григорьевича
по диссертации Михеева Андрея Николаевича на тему «Гидродинамика и теплообмен при поперечном обтекании цилиндра пульсирующим потоком» представленной на соискание ученой степени кандидата технических наук по специальностям: 01.02.05 – «Механика жидкости, газа и плазмы»; 01.04.14 – «Теплофизика и теоретическая теплоэнергетика»

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Фамилия, имя, отчество</th>
<th>Год рождения, гражданство</th>
<th>Место основной работы (с указанием организации, города, должность)</th>
<th>Ученая степень (с указанием шифра специальности научных работников, по которой защищена диссертация)</th>
<th>Ученое звание (по специальности, кафедре)</th>
<th>Основные работы, опубликованные в рецензируемых научных журналах за последние 5 лет</th>
</tr>
</thead>
</table>
| | Лаптев Анатолий Григорьевич | 1953, РФ | ФГБОУ ВО «Казанский государственный энергетический университет» заведующий кафедрой «Технология воды и топлива», 420066 г. Казань, ул. Красносельская д.51 | Доктор технических наук по специальности 05.17.08 – «Процессы и аппараты химической технологии» (технические науки) | Профессор, заведующий кафедрой «Технология воды и топлива» ФГБОУ ВО «Казанский государственный энергетический университет» | 1. Лаптев, А. Г. Эффективность теплообмена и разделения гетерогенных сред в аппаратах нефтегазохимического комплекса / А. Г. Лаптев, М. М. Башаров. – Казань: Центр инновационных технологий, 2016. – 344 с.

6. Лаптев, А. Г. Математическая модель теплоотдачи в каналах с насадочным и зернистыми слоями / А. Г. Лаптев, Т. М. Фарахов // Теплоэнергетика. – 2015. – № 1. – С. 77.

7. Рунов, Д. М Повышение эффективности теплообменных аппаратов путем рационального выбора диапазона частот электромагнитной обработки воды/ Д.М. Рунов,
<table>
<thead>
<tr>
<th>A. А. Лаптев // Теплоэнергетика. — 2015.— №5.— С.67.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8. Лаптева, Е.А. Ячейчная модель тепломассопереноса в пленочных блоках оросителей градирни / Е. А. Лаптева, А. Г. Лаптев // Вестник Казанского технологического университета.— 2015.— Т. 18.— № 11.— С. 181-185.</td>
</tr>
<tr>
<td>9. Лаптев, А. Г. Эффективность тепло- и массоотдачи в насадочных слоях / А. Г. Лаптев, М. М. Башаров, Е. А. Лаптева // Фундаментальные исследования.— 2015.— № 11-2.— С. 278-282.</td>
</tr>
</tbody>
</table>